\qquad
For full credit show all your work and circle your answer.
Solve the following:

1) Solve and, if possible, write your answer using both inequality notation and interval notation.

$$
\sqrt{x^{2}}<10
$$

3) Divide $\left(2 x^{7}-5 x^{3}+3\right) \div(x-4)$
4) Find a line perpendicular to $y=3 x+2$ and passing through the point $(2,-3)$. Graph both and provide an equation for the new line in slope intercept form.
5) Find all roots exactly for the polynomial: $P(x)=x^{4}+3 x^{3}-1 x^{2}-3 x$.
6) Solve exactly:
$\ln 6-\ln x=2$
7) Solve exactly for all values of Theta:
$\cos \Theta=\frac{\sqrt{3}}{2}$
8) Find the unknown side lengths $\mathbf{A N D}$ unknown angle measures of the triangle below if $b=3$ inches and $\alpha=60^{\circ}$.

a
9) Simplify to a single expression with coefficient of 1 .
$2 \log _{b} x-\log _{b} y=$
10) Solve the following to four decimal
places $\sin 2 x=2 \cos x$
11) Solve the system of equations using a matrix. Show the matrix you used!
$5 x+2 y-z=8$
$5 x-2 y+5 z=32$
$x+2 y+z=10$
12) Verify the following identity:
$\sin ^{2} x=\cos (2 x)$
13) Solve: $\frac{3 a-1}{a^{2}+4 a+4}-\frac{3}{a^{2}+2 a}=\frac{3}{a}$
14) In an arithmetic sequence $a_{4}=40$ and $\mathrm{a}_{10}=94$. Find the first five terms of the sequence:
15) Determine whether the sequence is geometric, arithmetic, or neither. Then find the common ratio r if its geometric, the common difference d if the sequence is arithmetic AND a formula.
$8,12,18,27, \ldots$
